

Option nv, Gaston Geenslaan 14, 3001 Leuven - Belgium - Tel +32 16 317 411 - Fax +32 16 207 164

Technical Specification

Application design for correctly handling Plug and
Play in Windows Systems

Option Confidential

Technical Specification, Application design for correctly handling
Plug and Play in Windows systems

Author: M. Sykes Version: v003ext

Creation Date: Apr 29, 2008 Page: 1 of 7

 Option
Confidential:

This document is Option Confidential - it may not be duplicated, neither distributed externally
without prior and written permission of Option nv.

About this document

Overview and Purpose

This document is aimed at application writers wishing to access devices that
are subject to the Windows Plug and Play system.

Confidentiality

All data and information contained or disclosed by this document is confidential and
proprietary of Option nv, and all rights therein are expressly reserved. By accepting
this document, the recipient agrees that this information is held in confidence and in
trust and will not be used, copied, reproduced in whole or in part, nor its contents
revealed in any manner to others without prior and written permission of Option nv.

Version History

Date Version Author(s) Revision(s) Remarks
Oct 22, 2007 v001ext M. Sykes Initial version

Dec 12, 2007 v002ext M. Sykes Elaborations on
DBT_DEVICEREMOVECOMP
LETE.

Apr 29 2008 v003ext M. Sykes small improvements regarding
device types on our devices

Technical Specification, Application design for correctly handling
Plug and Play in Windows systems

Author: M. Sykes Version: v003ext

Creation Date: Apr 29, 2008 Page: 2 of 7

 Option
Confidential:

This document is Option Confidential - it may not be duplicated, neither distributed externally
without prior and written permission of Option nv.

Table of contents

1 INTRODUCTION 3
2 References 4
3 Messages generated by the system 4
4 Registering for those messages 4
5 Device arrival message 5
6 Device query removal message 6
7 Device removal 6
8 Summary 7

Technical Specification, Application design for correctly handling
Plug and Play in Windows systems

Author: M. Sykes Version: v003ext

Creation Date: Apr 29, 2008 Page: 3 of 7

 Option
Confidential:

This document is Option Confidential - it may not be duplicated, neither distributed externally
without prior and written permission of Option nv.

1 INTRODUCTION

Removing devices from a running system is tough on the system. It has a big impact
on the device drivers, but also on applications that are accessing that device when it
is removed.

This document is an aid to application writers to handle these events correctly.

Technical Specification, Application design for correctly handling
Plug and Play in Windows systems

Author: M. Sykes Version: v003ext

Creation Date: Apr 29, 2008 Page: 4 of 7

 Option
Confidential:

This document is Option Confidential - it may not be duplicated, neither distributed externally
without prior and written permission of Option nv.

2 REFERENCES

Ref Document

3 MESSAGES GENERATED BY THE SYSTEM

The system generates WM_DEVICECHANGE messages to notify applications that a
device state has changed.

4 REGISTERING FOR THOSE MESSAGES

To get these messages an application has to register for them using
RegisterDeviceNotification() which is a two stage process, first by device interface
GUID and then by handle.

The application then needs to map the message to a handler. This is language
dependent.

So, to register for events on our Network device, we specify the Network device
GUID.

DEFINE_GUID(GUID_NDIS_LAN_CLASS, 0xad498944, 0x762f, 0x11d0, 0x8d,
0xcb, 0x00, 0xc0, 0x4f, 0xc3, 0x35, 0x8c);

Finding out the GUIDS for device classes is almost impossible. They are almost
totally undocumented even though Microsoft want applications to use this method of
handling PnP devices.

You can often intuit the correct GUID though by looking in the registry at
HKLM\Sys\CCS\Control\DeviceClasses.

ZeroMemory(&devNotification, sizeof(devNotification));
devNotification.dbcc_size = sizeof(DEV_BROADCAST_DEVICEINTERFACE);
devNotification.dbcc_devicetype = DBT_DEVTYP_DEVICEINTERFACE;
devNotification.dbcc_classguid = GUID_NDIS_LAN_CLASS;

hInterfaceNotification = RegisterDeviceNotification(this->GetSafeHwnd(),

&devNotification,
DEVICE_NOTIFY_WINDOW_H
ANDLE);

When a network device is inserted into the system a DBT_DEVICEARIVAL message
is generated and posted to all registered apps and services.

Technical Specification, Application design for correctly handling
Plug and Play in Windows systems

Author: M. Sykes Version: v003ext

Creation Date: Apr 29, 2008 Page: 5 of 7

 Option
Confidential:

This document is Option Confidential - it may not be duplicated, neither distributed externally
without prior and written permission of Option nv.

5 DEVICE ARRIVAL MESSAGE

With the message is a PDEV_BROADCAST_DEVICEINTERFACE structure. This
contains a system generated symbolic link name for the device, p->dbcc_name,
which takes the form of
"##?#OPTIONBUS#GTS_FF_NET#6&33055f51&0&#{ad498944-762f-11d0-8dcb-
00c04fc3358c}{ 8B90C8C7-1244-4788-A590-30CDB0EC9B4C}"

As horrendous as this looks, it is usefull. For, although this friendly name relates to
an Ndis device, and so isn't usefull to an application, if we had registered for events
with a COM device interface GUID you could directly pass this system created
symbolic link to CreateFile(); and use the returned handle to do all the same kinds of
IO that you would do if you had opened "\\\\.\\COM11" for example.

This is very useful then. Your app no longer needs to know the COM number.

 The application should then check the name of the device associated with the
symbolic link (dbcc_name) to make sure it is one we are interested in.

GetDeviceDescription(p->dbcc_name, DeviceName)); DeviceName is a CString.

Accompanying this document is a zip file containing source code for this function.

If this is our device we need to register for device events a second time, but this time
by handle:

m_hDevice = CreateFile(p->dbcc_name,

MAXIMUM_ALLOWED ,
0,
NULL,
OPEN_EXISTING,
0,
NULL);

if(m_hDevice == INVALID_HANDLE_VALUE)
{

doerror();
 break;
}

ZeroMemory(&filter, sizeof(filter));
filter.dbch_size = sizeof(filter);
filter.dbch_devicetype = DBT_DEVTYP_HANDLE;
filter.dbch_handle = m_hDevice;

hHandleNotification = RegisterDeviceNotification(GetSafeHwnd(),

&filter,
DEVICE_NOTIFY_WINDOW_HANDLE);

Doing this second registration allows the application to receive
DBT_DEVICEQUERYREMOVE messages.

Technical Specification, Application design for correctly handling
Plug and Play in Windows systems

Author: M. Sykes Version: v003ext

Creation Date: Apr 29, 2008 Page: 6 of 7

 Option
Confidential:

This document is Option Confidential - it may not be duplicated, neither distributed externally
without prior and written permission of Option nv.

Now, at this stage you have the actual Ndis device open but an app cant do IO
directly with an Ndis device, Ndis disallows it. So the Ndis driver creates another
device that can be opened by an app. It names this device "GtNdisx" Where 'x' is a
numeric number from zero onwards incrementing automatically each time a new
card is inserted in the machine. Generally of course, this will be "GtNdis0".

You need to call CreateFile() then using GtNdis0 etc for the first parameter.

If you call the IOCTL_GT_NDIS_GPRS_GET_NET_CFG_ID on the gtndis'x' device
you will be given a GUID. This is actually the same as the second GUID in the Ndis
device handle passed to you in the DBT_DEVICEARRIVAL message and is the only
way to associate a particular GtNdis'x' device with a particular Ndis device.

6 DEVICE QUERY REMOVAL MESSAGE

The application receives a DBT_DEVICEQUERYREMOVE when the user does a
safe remove.

If the application wants to allow this it must deregister for device events by handle by
calling

UnregisterDeviceNotification(hHandleNotification);

It must also call CloseHandle(m_hDevice); on the handle it got calling CreateFile() in
the DBT_DEVICEARIVAL handler.

It must also close any handles it opened on the GtNdis'x' symbolic link.

7 DEVICE REMOVAL

The application gets a DBT_DEVICEREMOVECOMPLETE when the card is finally
removed, and when the card is surprise removed.

The application must deregister for notification by handle and close any handles on
the device the same way it does for DBT_QUERYREMOVE.

*NOTE: Depending on the class of device you have registered for events on you
might get either a DBT_DEVICEREMOVECOMPLETE by INTERFACE, or by
HANDLE.

With the Network device class GUID, you will get it by INTERFACE, with other
classes (our own bespoke bus class GUID) we get it by HANDLE.

So it is best to handle both types of message in the
DBT_DEVICEREMOVECOMPLETE handler and close all open handles on the
device.

Technical Specification, Application design for correctly handling
Plug and Play in Windows systems

Author: M. Sykes Version: v003ext

Creation Date: Apr 29, 2008 Page: 7 of 7

 Option
Confidential:

This document is Option Confidential - it may not be duplicated, neither distributed externally
without prior and written permission of Option nv.

8 SUMMARY

That is all there is to it, and if an application follows this it will always know when the
device is there or not, and when it can and cant access the device.

Source code is available that demonstrates this, it is in GtmNicApp.zip.

